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An overlooked aspect of the wind-driven 
oceanic circulation 

By JOSEPH PEDLOSKY 
Department of Mathematics, M.I.T. 

(Received 14 November 1967) 

The wind-driven circulation of a simple model of the oceanic circulation (linear 
and homogeneous) is investigated in detail to delineate the role of the Ekman 
layer mass flux in driving hitherto overlooked components of the oceanic circula- 
tion. 

The role of upwelling boundary-layer regions in driving interior geostrophic 
circulations is discussed in detail. Several interesting circulations hidden in the 
earlier transport theories are described. 

1. Introduction 
Theories of the wind-driven oceanic circulation (e.g. Sverdrup 1947; Stommel 

1948; Munk 1950, etc.) usually relate the horizontal mass transport to the 
applied wind stress. As Stommel (1955) pointed out, this powerful technique of 
dealing solely with the vertical integral of the horizontal velocity often hides 
important information concerning the partition of the flow between the surface 
viscous boundary layer (the Ekman layer) and the geostrophic, inviscid interior. 
Certain important questions dealing with the transport of mass in the Ekman 
layer, which may be as large as the total interior transport, are not dealt with by 
the transport theories. 

It is known, for example, that the transport in the Ekman layer is directed 
(in the northern hemisphere) to the right and perpendicular to the applied stress. 
What happens to this flow when it impinges on an ocean boundary? What 
happens if the stress is such as to produce a horizontally non-divergent Ekman 
layer T In such a case the flow is limited to the Ekman layer with the fluid below 
the Ekman layer remaining at  rest. Are western boundary currents analogous 
to the Gulf Stream still required ‘2 And if so, are such currents also as shallow as 
the Ekman layer ? 

The purpose of this paper is to construct a model sufficiently simple to be able 
to  answer such questions by explicitly dealing with the Ekman layer and the 
region below the Ekman layer separately. In doing so, certain novel circulation 
phenomena emerge which are lost by vertical averaging. To keep the model 
simple enough for this purpose a linear model of a closed, homogeneous ocean 
is considered. Nevertheless, the general qualitative results are not expected to 
depend strongly on these simplifying assumptions. 

It will be shown that the interior geostrophic circulations depend on the stress 



810 Joseph Pedbsky 

itself in distinction to the transports which depend entirely on the curl of the 
wind stress. It appears, for example, that the interior geostrophic zonal flow need 
not be zero on the eastern boundary of the oceanic basin although the total 
transport must be. In  fact the simple result is really that the horizontal flux in 
the Ekman layer, as well as its divergence, can drive a geostrophic interior 
circulation and intense boundary currents. 

Since the vertical flux balance is important in determining the complete 
oceanic circulation it is necessary to consider in detail the boundary layers in 
which the vertical mass flux balance is achieved. Aside from these upwelling 
regions, which girdle the entire basin, the elements of the theory are fairly stan- 
dard. 

2. Themodel 
Consider a rectangular oceanic basin of constant depth B, bounded by rigid 

horizontal walls on x = 0, L, and y = 0,  bL. The fluid is incompressible and homo- 
geneous with a density p. The effect of the earth's sphericity is modelled by using 
a variable Coriolis parameter, f, equal to twice the local normal component of 
the earth's rotation. It is taken as a linear function of y, the northward co- 
ordinate, i.e. 

f =fo+P*Y- 
The equations of motion are 

uu, + vuy + wu, - fv = -pz + VH(U,, + uyy) + vy u,,, 
P 

P 
- Pz 

P 

uvu, + vvy + WVz + f u  = * + vH(vxr f vyy) f VJ7?&:, 

uw, + vwy + ww, = __ + v,(wx, + wyy) + vy  w,,, 

u,+v,+w, = 0. 

The co-ordinates x, y and z measure eastward, northward and upward res- 
pectively while u, v and w are the corresponding velocity components. Constant 
momentum Austausch coefficients have been introduced, vH for horizontal 
mixing, vy  for vertical mixing. The general results of this paper do not depend 
crucially on their relative sizes. The ocean is driven on its surface by a stress 
~ ( x ,  y) = P~(z )+ j rQ;  i: and j being unit vectors parallel to the x- and y-axes 
respectively. 

Dimensionless variables (primed) are introduced as follows 

D 
w = - UW', 

L 
z = Dz', 

p = pULf0p', 7 = TOT', 

f;fo(l +PY') = f o f ' ,  
where U = ro/(vypfo/2)ib, /3 = ,8* L/fo, while ro is a characteristic value for the 
applied wind stress. 
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In  dimensionless units the equations of motion become, after dropping the 
prime notation, 

E(UV, + vvy + WV,) = -py  -fu + EH 2 (vzz + Vy,) + Ev - V,,, (2 . lb )  
2 

uz+vy+w, = 0. ( 2 . 1 4  

Four dimensionless parameters have been introduced: 

e = U/fo L, 
E, = 2vv/foD2, 

E H  = 2vH/foL2, 

the Rossby number; 
the ‘vertical’ Ekman number; 
the ‘horizontal’ Ekman number; 
the aspect ratio. 

Only the linear problem will be considered, so that terms multiplied by e in 
( 2 . 1 )  will immediately be dropped. Both EH and E,  are small, and for simplicity 
of exposition only, we shall arbitrarily take EH = E, = E.  No preference is 
therefore given to  either horizontal or vertical turbulent mixing in the theory. 
Distinct values for E ,  and E,, uncertain at best, can be carried along without 
changing the essential nature of the results. Finally, the aspect ratio 6 is also 
considered small. 

6 = D/L,  

The boundary conditions are: 

(u,v,w) = 0 on x = 0 ,1 ,  

Y = O,b ,  
and x =  0 ;  

w = 0, 

[::] = E-fr Ez] on z = 1 .  

3. The upper Ekman layer 

be represented as follows; 
In  regions removed from the effects of the side walls the dynamical fields can 

u=EfruI(x,y,x)+ ... +uE(x,y,6)+ ..., ( 3 . 1 ~ )  

v=EfrvI(x,y,z)+ ... + ~ E ( z , Y , ~ ) +  ..., (3 . lb )  
w = E*W,(Z, Y ,  Z )  + . .. ( 3 . 1 ~ )  

p = E*pz(x, Y ,  2 )  + .. . ( 3 . l d )  

The variables are composed of two parts; subscripted I variables represent the 
fields below the Ekman layer, while the E subscripted variables represent the 
corrections needed within the Ekman layer region, i.e. a distance of O(E)* of 

+ E*w,(x, y ,  6 )  + . . ., 
+ 62EpE(x, y ,  6 )  + . . .. 
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z = 1.  The boundary-layer corrections are functions of 

5 = ( l -x)E-B,  

and go to zero as 6 becomes large. 

following results: 
The Ekman layer problem is a standard one in oceanography and yields the 

1 
v E  = - e - c d f [ ( ~ ( v ) - ~ ( x ) )  coscJf- ( ~ ( ~ ) + ~ ( z ) ) s i n < J f ] ,  

wE(x,  y ,  0) = - hk. curl ( T i t ) ,  

(3.2b) 

( 3 . 2 ~ )  

The mass flux vector, U, = iUE+jVE, representing the mass flux within the 

u, = ,!!%fa d<(iu, + jv,) = - [i+) - j ~ ( ~ ) ] ,  ( 3 . 2 d )  

while the applicat'ion of (2.2b) with the use of ( 3 . 2 ~ )  yields as a boundary condi- 
tion for the interior flow 

w,(x, y, 1)  = $&.curl (7/f). ( 3 . 2 e )  

2Jf 

where k is a unit vertical vector. 

Ekman layer is E-: 
0 2f 

4. The interior 
I n  regions not adjacent to the lateral boundaries, and below the Ekman layer, 

the dynamic variables are represented by the I subscripted variables and to 
O(E) satisfy the equations: 

0 = -Plr+fvI ,  ( 4 . l a )  

Q = -PI,-.fuI, 

o =  --PI 2 7  

(4.16) 

( 4 . 1 ~ )  

0 = U I a + V I V + W I z ,  ( 4 . l d )  

The motion is geostrophic and hydrostatic and therefore the horizontal 
velocities are independent of depth. By eliminating the pressure we obtain the 
Sverdrup re1 ati on, 

PVI  =fwrz. (4.2) 

Since the interior velocity is O(E4) the suction velocity out of the lower Ekman 
layer is only O(E) (Pedlosky & Greenspan 1967) so that 

(4.3) 

(4.4a) 

wI = +zk . curl ( ~ / f ) .  (4.4b) 

The northward transport in the geostrophic interior, 
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is Efv ,  (since v, is independent of x )  so that the total northward mass transport 
is given by the familiar Sverdrup transport relation 

(4 + V,) = BE&. curl z. (4.5) 

From (4.1 a )  and (4.1 b )  we deduce that 

(4 .6a)  

(4.6b) 

The interior pressure and zonal velocity uI, are determined only up to a func- 
tion of y. It is important to note that this ambiguity exists solely for the interior, 
geostrophic, zonal flow. The corresponding flow in the Ekman layer is completely 
determined. The function h ( y )  is determined only by consideration of the boun- 
dary layers on x = 0 and x = 1. 

5. The meridional boundary layers 
On each meridional wall (x = 0 and x = 1)  boundary layers occur which provide 

correction fields to the interior flow to satisfy the zero boundary conditions on the 
velocity. In  the region below the Ekman layer two distinct regions are found. 

First, a hydrostatic layer of thickness ES, in which the downstream velocity is 
geostrophic, similar to that found by Munk (1950), is required. This layer is 
produced by the p effect, i.e. the variation off. 

layer, an upwelling region is found whose dynamics depend 
on the magnitude of 6. If 6 $ E f  this inner region has a thickness (6E)*, is non- 
hydrostatic, and is in fact dynamically similar to the + power layer discussed 
by Stewartson (1957). If, however, 6 < E4 this inner layer splits into two layers. 
One has thickness E* in which the vertical mass flux balance is achieved. The 
flow is hydrostatic in this region but the downstream velocity is non-geostrophic. 
Within this layer an even thinner non-hydrostatic region exists of thickness 6 
which serves only to bring the vertical velocity to rest. 

The latter parameter regime, 6 < E*, is probably of greater oceanographic 
relevance, and since it also presents certain novel dynamical features, the 
discussion will be limited to that case. The case when 6 Et leads to no new 
qualitative features as far as the interior circulations are concerned. 

Consider first the boundary-layer region near the western wall, i.e. near 
x =  0. 

Within the outer boundary layer the variables are given as 

Interior to this 

= Ek,(x,y)+.. .  +E%qq,y)+ ...) 

v = E ~ z L ~ ( x ,  y) + ... + E@(q, y) + ... , 
w = E*W,(X, y) + 
P = E*PI(X, 3) + .. . 

E+d, 

E+@(?), y) + . . . , 
7 = xE-B. 

(5 . la  

(5 . lb)  

( 5 . 1 ~ )  

(5.ld) 

where 
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The caret correction functions satisfy: 

o =  - @  1 '  +fa ( 5 . 2 ~ )  

o =  -@ Y -f&+'Q 2 119 (5 .2b)  

o =  -8 2 3  ( 5 . 2 ~ )  

a,+a, = 0, ( 5 . 2 d )  

and go to zero as 7+00. 
Eliminating the pressure yields 

(5 .3)  

( 5 . 4 4  

h 
VTVlg - spa = 0 

with solutions, 

a = C ( y )  exp ( - (2p)47/2)  sin 

(5 .4b)  

This is the ordinary viscous model of the Gulf Stream due to Munk. The 
function C(y) is determined by matching to the interior. 

Within this layer two narrower layers exist as mentioned above. The thicker 
of these two layers has a thickness E i  within which the dynamic variables are 
represented by : 

u = E*u,+ ... E*&(q,y)+ ... + E k ( e , y , x ) +  ..., ( 5 . 5 a )  

v = E*v,+ ... E a ( v , y ) +  ... +E*ij([ ,y ,~)+ ..., (5 .5b)  

w = E*w,+ ... O(E)+  ... + we, Y, 4 + .. ., (5 .5c)  

p =E*pI+ ... E*@(?,y)+ ... +EP( < ,Y , z )+  ..., ( 5 . 5 4  

where 6 = xE-4. 

The tilde variables satisfy: 0 = - pS+fij+ 1Q 2 55' 

o =  -fQ+Iv" 

o =  -fj 2 )  

2 55' 

ii5+i5$ = 0. 

( 5 . 6 ~ )  

(5 .6b)  

( 5 . 6 ~ )  

( 5 . 6 d )  

The motion is still hydrostatic but the downstream velocity is no longer geo- 
strophic. 

From (5 .6d)  we may write - 
Q =  +J.=, w =  - J .  5' 

Eliminating all variables in favour of $ yields 

so that J.&& + 4f z$ = 46) + b(5)  x .  (5 .7)  

To determine the functions a(5) and b(C) we note first that 63 = 0 on x = 0 so 
that a(<) = 0. To determine b(6) the E4 by E4 corner on x = 0, z = 1 must be 
analyzed. This is usually an extraordinarily difficult task. Nevertheless, in this 
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problem sufficient information can be obtained from analysis to determine b(6).  
Since the upper surface is a surface of zero stress for the correction functions. 
equations for the vertical average of the corner corrections may be obtained. 
Then by satisfying the zero velocity conditions on x = 0 in conjunction with the 
fields given by (3.2) the vertical means are completely determined in the corner. 
These in turn yield the vertical velocity pumped out of the E* side wall layer into 
the corner. The details are presented in the appendix. The result is that on z = 1, 

E*$([, y, 1) = e-cdf[VE sin6$+ U, cos [df]. 

E*$([, y,  z )  = e-"f[A(z) sin c.Jf+B(z) cos c,/fj. 

( 5 4  

(5.9) 

Substitution of (5.8) into (5.7) yields b(&) = 0. 
Thus 

It is important to note that this thinner layer, whose mathematical structure 
is similar to the Ekman layer, and which is absent in the transport theories, can 
absorb as large a zonal velocity as the outer layer. Thus the matching conditions 
on the horizontal motions are in reality more involved than indicated by the 
transport theories. Since the interior horizontal velocities as well as the hori- 
zontal velocities in the Munk layer are independent of z we require that A(z) and 
B(z) be linear functions of z. Then by matching (5.9) with (5.8) at z = 1 we 
obtain for the upwelling layer 

E*$(E, Y, 2) = ~e-"'~CvE(o, Y )  sin t,/f+ &(O, Y) cos t@l. (5.10) 

Interior to this layer the thinnest layer exists to bring w to rest. This layer 
possesses negligible vertical and horizontal mass fluxes, and does not enter into 
the important matching formulae relating the horizontal velocities. For brevity 
therefore its analysis will not be presented. 

On the eastern wall the structure of the inner layer is unchanged and the 
correction stream function is of the same magnitude and is represented by 

where iZ = qZ, 65 = gP and p = (1 -2) E d .  

metry due to the p effect changes (5.3) to 

where h = (1 - x) E-4. Only a single decaying solution exists, a simple exponen- 
tial solution, and the no-slip condition on w requires that 0 be O(E*) rather than 
O(E*) as it is on the western wall. This in turn requires that 42 be O(E9). Con- 
sequently on x = 1 only the thinner upwelling layer can enter the matching 
condition on the zonal velocity, i.e. 

Eh$(~,y,z) = ~ e - P ~ ~ [ + ~ E ( l , y ) s i n p , / f +  u E ( 1 , ~ )  C O S ~ & ~ ,  (5.11) 

On the other hand, in the outer layer on the eastern side, the east-west asym- 

Ohhh+ 2pa = 0, 

u,+G=O on x = l  

E*u,(l,y) = - U,(l,y) or with (4.6b) and (5.11) 

or 

Thus U,(X, y) = - - f f "  dx'ii.cur1 G) - - $) - (1, y). 
2Pf aY a s,' 

(5.12) 

(5.13) 

(5.14) 
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The geostrophic zonal $ow i s  not zero on x = 1 unless the wind stress itself i s  
parallel to the x axis at x = 1. The total transport, however, is zero. 

Matching the zonal velocity on the western wall implies that 

U,(O, Y )  + wo, Y )  + C(0, y) = 0. (5.15) 

Using (&la), (5 .4b ) ,  (5.10) and ( 3 . 2 d )  

or after some manipulation 

(5.16) 

The constant K yields a component of the northward boundary-layer trans- 
port which is independent of y and can be determined by matching boundary- 
layer fluxes at  the northern or southern corners of the western Munk layer with 
the horizontal mass flux entering from the boundary layers on y = 0 or y = b. 
It is interesting to note that the value of C(y) is the same as given by the trans- 
port theories. Thus the strength of the western boundary current, which we 
identify with the Gulf Stream, is independent of the partitioning of the interior 
flow between the Ekman layer transport and the geostrophic transport. This has 
interesting consequences which will be discussed later. 

6. The latitudinal boundary layers 
On both y = 0 and y = b we again find a multiple layer structure. There is 

again an upwelling layer (which we now see girdles the entire basin) which once 
again serves to accept the Ekman flux normal to the boundary allowing it to 
descend to complete the mass flux circuit. The outer hydrostatic /? layer is now 
even thicker on y = 0 and y = b; its thickness is Ea. The northward velocity is 
small in this layer, O(E*), and the consequent reduction in the advection of 
planetary vorticity explains the more diffuse character of the layer. 

In the outer layer the various fields have the following representations. On 
the northern boundary, for example, 

(6.la) 

( 6 . l b )  

( 6 . 1 ~ )  

(6.ld) 

where the boundary-layer correction variables, denoted by a caret, go to zero as 
7 = (b  - y) E-b becomes large. 

The correction fields satisfy 

u = E h I ( X )  y) + .. . . 
?I = Eb,(x, y) + .. . . 

w = E&W,(X, y )  + ... . 
p = E4p1(x, y) + ... . 

Ehqx, 7) + .. .) 
E q x ,  $) + .. .) 
E%(x, 7 , z )  + ..., 
E~@(x, 17) + ..., 

0 = -+$i7-ja, (6.2a) 

0 = -$iz+fs+(;ES)Q,,, (6.2b) 

o =  - @  2 )  ( 6 . 2 ~ )  

( 6 . 2 d )  2 x - $  ‘I = -&E+b. 
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On x = 0 the Ekman layer provides a suction given by the relation 

A 1 aa 
w(x, 7,O) = - -. 

2Jf 87 
(6 .2e )  

If all variables are eliminated in favour of the pressure we obtain 

@.l.l.lv - Jf P,, - 2 P h  = 0. (6.3) 

Note that the vertical flux in this layer is O(E2) which is too small to figure in 
the vertical mass flux balance. Again it is the upwelling layer which must accept 
the northward Ekman flux on y = b. The analysis of the inner layer will proceed 
as before. For the sake of brevity it will not be repeated, rather the results will 
be quoted as needed. 

Boundary conditions for (6.3) are obtained as follows. 
There is no layer on x = 1 which will provide an O(E4) horizontal mass flux. 

Therefore the total mass flux impinging on the northern wall must turn and 
proceed to the western boundary layer for its trip south to complete the hori- 
zontal mass flux circuit. This implies that for each x on y = b, 

The no slip condition on u requires that 

a@/ay = 0 on y = b. 

With the condition 

sufficient conditions are available for the solution of (6.3). 
The solution of (6.3) is quite complicated and is not presented here. The 

boundary layer has the character of a diffusion-like equation with the origin of 
the time like variable, x, at x = 1. The layer grows in thickness as x = 0 is 
approached from the east. 

m 7 )  = 0, 

From (6.4) we see that on y = b, 

,. 1 @(x, 0) - 1 v = -~ - --&.curl=. 
f ax 2P 

The matching condition on v at  y = b requires that the northward correction 
velocity in the upwelling layer, G, must satisfy 

G = - v~(x, b)  - @(x, 0) 

f 7 1  

2P f 2P 
= --G.curl-+-G.curl=, at y = b, 

(6.8) 
dX)(x  b )  

or that 

which matches the result yielded by detailed analysis of the upwelling layer. 
Thus, the Ek layer closes the horizontal mass flux while once again the upwell- 

ing layer transfers the flux in the upper Ekman layer downward and returns it to 
the interior. 

The constant K ,  in the solution in the western layer, can now be determined. 

V"(x,O) = -2 = V,(x,b)E-i, 
2.f 

52 Fluid Mech. 32 
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The total northward mass flux in the western boundary current on y = b,  
V, is 

while the eastward mass flux in the northern boundary layer at x = 0 is 

Matching fluxes in the north-west corner requires that 

K = 0, 
which completes the problem. 

7. Examples 
Now that the matching is complete, it is of interest to consider some special 

examples. The important point to be kept in mind is that the vertical flux balance 
achieved in the upwelling layers imposes compatibility conditions on the geo- 
strophic flow which is manifested by certain interior circulations in addition to 
those driven by the Ekman layer flux divergence (suction). 

Example 1.7 = T ( y ) j  

In  this example, with a wind stress directed solely northward and independent 
of x, both k . curl T and L. curl ( ~ / f )  are zero. Thus the transport theories would 
reveal only that no net transport is occurring and would yield no other infor- 
mation. Nevertheless, a very interesting circulation exists. From (3.2d) we see 
that there is a zonal flux directed to the east in the Ekman layer, 

(7.la) 

In  the interior there is no northward flux, nor is there any Ekman layer suc- 

1 

tion so that wI = 0 also. Nevertheless, there is a zonal flow given by (5.13b), 

U I  = -- T(Y), ( 7 . l b )  

which just compensates for the Ekman layer flux. There are no p layers and hence 
no western intensification due to the zonal flow given by (6.lb). The entire flux 
circuit is confined to the (x,x)-plane. The fluid moves eastward in the upper 
Ekman layer, down the eastern upwelling (here a downwelling) layer, westward 
in the interior and upward in the western upwelling layer. The geostrophic 
circulation is the same order as those predicted by the transport theory, but a 
transport theory would not reveal the presence of this circulation. Note again 
that the circulation has no east-west asymmetry. 

Example 2 . 7  = - A(x) f f  

In  this case the wind stress is strictly zonal. The northward geostrophic transport 
vI is identically zero and the entire northward flux, 

2f 

L 
2P 

V = Eh - .curl z = E* A(x) = V,, 

takes place in the Ekman layer. Upon reaching y = b, the fluid descends in the 
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upwelling layer and flows westward in the Ea layer and then southward in the 
western /3 layer. It then flows eastward in the southern Ea layer while rising in 
the upwelling layer to enter the southern edge of the Ekman layer to  complete 
the circuit. 

Thus although there is no flow in the interior below the Ekman layer, there is a 
transport in the northern, western and southern boundary currents extending 
to the bottom. The vertical average of this circulation is identical, of course, to 
that predicted by the transport theories. 

Example 3. T = - B(x)P 

The circulation in this case is similar to the first example. There is no vertically 
averaged transport. The flow goes northward in the Ekman layer, descends in 
the northern upwelling layer, proceeds southward in the interior and ascends 
in the southern upwelling layer to complete the circuit in a roll type circulation 
with again, no western intensificati0n.t 

8. Conclusion 
In  general the circulations predicted, even in this very simple model, are much 

more complex than indicated by theories dealing only with the horizontal mass 
transport. In addition to the /3 boundary layers which are required to close the 
horizontal transports and which introduce the pronounced east-west asymmetry 
in the ocean circulation, narrow upwelling regions girdling the entire basin are 
required to  achieve a balance of the vertical mass flux. This balance of the vertical 
mass flux forces interior geostrophic circulations in response to the Ekman 
layer flux. It is somehow satisfying to see the reappearance of the stress itself as 
an important factor in determining the large scale interior circulations in addition 
to the curl of the stress. 

If p is small the circulations produced by the stress itself will be smaller by 
O ( p )  than the circulations produced by the curl of the stress. Nevertheless, even 
in such cases it may be necessary to consider this smaller circulation to fully 
understand the closure of the fluid circuit. 

For example H. P. Greenspan and I considered a related problem in which 
fluid in arotating cylinder with a slanted bottom is driven by a differential motion 
of the upper surface (Pedlosky & Greenspan 1967). In  the example studied, the 
bottom slope (analogous to p )  was small. The fluid in the Ekman layer was flung 
out radially with complete axial symmetry while the largest downward velocities 
were restricted to the ‘western’ side of the cylinder. It was something of a puzzle 
to explain how the circulation circuit of a fluid element which impinged on the 
‘eastern’ boundary in the Ekman layer was completed. Although the model’ 
differs in some respects from the one discussed in this paper, it  is clear that ;t 
smaller circulation of the type found in example 1 of the preceding section must 
be added to complete the fluid circuit.$ 

that only a portion of the flow descends in the E4 layer on y = b. 

(private communication). 

Due to the /I effect the Ekman layer leaks fluid to the interior, (equation (3.2e)), so 

$ This circulation has recently been calculated by Derek Moore & Phillip Saffman 

52-2 
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Finally, these additional circulations in the interior, forced by the Ekman 
layer flux, have important implications for the case of a stratified ocean, where 
this additional transport of heterogeneous fluid will provide buoyancy effects 
and contribute to the oceanic heat balance. This problem is being studied further. 

My interest in the problem was stimulated greatly by my discussions with 
Victor Barcilon on the problem of the circulation of a stratified ocean. 

This research was partially supported by the Office of Scientific Research of 
the U.S. Air Force Grant AF-AFOSR-492-66. 

where the c subscripted variables are the corner correction functions and satisfy 

subject to the boundary conditions 

63s wc = ucs = vcc = 0 on C = 0, 
uc= -uE on t = O ,  
v,= -v E on [ =  0, 

while the corrections go to zero as 6 and become large. By vertically integrating 
the system (A 2) we find with the use of (A 3 a )  that 

where 

The solution of (A 4) subject to (A 3 b)  and (A 3c) ,  (or their vertical integrals) is 

U, = - e-C"f[V, sin .Jf <+ V, cos ,/f 61, 
v,= - e-cdf[& cos Jf 5 - U, sin ,/f [I, 

(A 5a)  

(A 5 b )  



and with (A 3a)  

Wind-driven oceanic circulation 

a 
at -w&, 0) = wt, 1) = - v,, 

or since wt, 1) = -$-& I) ,  

we find 

which is identical t o  (5.10). 

$(t, 1) = e-dfc[VE sin y'f t + U, cos y'f 51 
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